This guide will show you how to create a new Viash component.
A metric is a quantitative measure used to evaluate the performance of the different methods in solving the specific task problem.
This guide will show you how to create a new Viash component. In the following we will show examples for both Python and R. Note that the Task template repo is used throughout the guide, so make sure to replace any occurrences of "task_template" with your task of interest.
Use the create_*_metric.sh script found in the scripts repository to start creating a new metric. Open the script and update the name parameter to the desired name of the method.
[notice] Checking if Docker image is available at 'ghcr.io/openproblems-bio/core/project/create_component:build_main'
Check inputs
Check language
Check API file
Read API file
Create output dir
Create config
Create script
Done!
This will create a new folder at src/metrics/my_python_metric containing a Viash config and a script.
src/metric/my_python_metric
├── script.py Script for running the metric.
├── config.vsh.yaml Config file for metric.
└── ... Optional additional resources.
scripts/create_component/create_r_metric.sh
Check inputs
Check language
Check API file
Read API file
Create output dir
Create config
Create script
Done!
scripts/create_component/create_r_metric.sh
common/scripts/create_component\--name my_r_metric \--language r \--type metric
This will create a new folder at src/metrics/my_r_metric containing a Viash config and a script.
src/metrics/my_r_metric
├── script.R Script for running the metric.
├── config.vsh.yaml Config file for metric.
└── ... Optional additional resources.
Change the --name to a unique name for your metric. It must match the regex [a-z][a-z0-9_]* (snakecase).
A config file contains metadata of the component and the dependencies required to run it. In steps 2 and 3 we will fill in the required information.
A script contains the code to run the metric. In step 4 we will edit the script.
Tip
Some tasks have multiple metric subtypes (e.g. batch_integration), which will require you to use a different value for --type corresponding to the desired metric subtype.
Step 2: Fill in metadata
The Viash config contains metadata of your metric, which script is used to run it, and the required dependencies.
Generated config file
This is what the config.vsh.yaml generated by the create_component component looks like:
# The API specifies which type of component this is.# It contains specifications for:# - The input/output files# - Common parameters# - A unit test__merge__: ../../api/comp_metric.yaml# A unique identifier for your component (required).# Can contain only lowercase letters or underscores.name: my_python_metric# Metadata for your componentinfo:metrics: # A unique identifier for your metric (required). # Can contain only lowercase letters or underscores.-name: my_python_metric # A relatively short label, used when rendering visualisarions (required)label: My Python Metric # A one sentence summary of how this metric works (required). Used when # rendering summary tables.summary:"FILL IN: A one sentence summary of this metric." # A multi-line description of how this component works (required). Used # when rendering reference documentation. description: | FILL IN: A (multi-line) description of how this metric works. # references: # doi: # - 10.1000/xx.123456.789 # bibtex: # - | # @article{foo, # title={Foo}, # author={Bar}, # journal={Baz}, # year={2024} # }links: # URL to the documentation for this metric (required).documentation: https://url.to/the/documentation # URL to the code repository for this metric (required).repository: https://github.com/organisation/repository # The minimum possible value for this metric (required)min:0 # The maximum possible value for this metric (required)max:1 # Whether a higher value represents a 'better' solution (required)maximize:true# Component-specific parameters (optional)# arguments:# - name: "--n_neighbors"# type: "integer"# default: 5# description: Number of neighbors to use.# Resources required to run the componentresources: # The script of your component (required)-type: python_scriptpath: script.py # Additional resources your script needs (optional) # - type: file # path: weights.ptengines: # Specifications for the Docker image for this component.-type: dockerimage: openproblems/base_python:1.0.0 # Add custom dependencies here (optional). For more information, see # https://viash.io/reference/config/engines/docker/#setup . # setup: # - type: python # packages: numpy<2runners: # This platform allows running the component natively-type: executable # Allows turning the component into a Nextflow module / pipeline.-type: nextflowdirectives:label:[midtime,midmem,midcpu]
Contents of config.vsh.yaml
# The API specifies which type of component this is.# It contains specifications for:# - The input/output files# - Common parameters# - A unit test__merge__: ../../api/comp_metric.yaml# A unique identifier for your component (required).# Can contain only lowercase letters or underscores.name: my_r_metric# Metadata for your componentinfo:metrics: # A unique identifier for your metric (required). # Can contain only lowercase letters or underscores.-name: my_r_metric # A relatively short label, used when rendering visualisarions (required)label: My R Metric # A one sentence summary of how this metric works (required). Used when # rendering summary tables.summary:"FILL IN: A one sentence summary of this metric." # A multi-line description of how this component works (required). Used # when rendering reference documentation. description: | FILL IN: A (multi-line) description of how this metric works. # references: # doi: # - 10.1000/xx.123456.789 # bibtex: # - | # @article{foo, # title={Foo}, # author={Bar}, # journal={Baz}, # year={2024} # }links: # URL to the documentation for this metric (required).documentation: https://url.to/the/documentation # URL to the code repository for this metric (required).repository: https://github.com/organisation/repository # The minimum possible value for this metric (required)min:0 # The maximum possible value for this metric (required)max:1 # Whether a higher value represents a 'better' solution (required)maximize:true# Component-specific parameters (optional)# arguments:# - name: "--n_neighbors"# type: "integer"# default: 5# description: Number of neighbors to use.# Resources required to run the componentresources: # The script of your component (required)-type: r_scriptpath: script.R # Additional resources your script needs (optional) # - type: file # path: weights.ptengines: # Specifications for the Docker image for this component.-type: dockerimage: openproblems/base_r:1.0.0 # Add custom dependencies here (optional). For more information, see # https://viash.io/reference/config/engines/docker/#setup . # setup: # - type: r # packages: tibblerunners: # This platform allows running the component natively-type: executable # Allows turning the component into a Nextflow module / pipeline.-type: nextflowdirectives:label:[midtime,midmem,midcpu]
Required metadata fields
Please make sure that the following fields in the config file are filled in. The metrics component can contain several metric values these are listed in the info.metrics.
Step 3: Add dependencies
Each component has it’s own set of dependencies, because different components might have conflicting dependencies.
base images
For your convenience we have created several base images that can be used for python or R scripts. These images can be found in the OpenProblems Docker repository. Click on the packages to view the url you need to use. You are not required to use these images but install the required packages to make sure OpenProblems works properly.
openproblems/base_python Base image for python scripts.
openproblems/base_r Base image for R scripts.
openproblems/base_pytorch_nvidia Base image for scripts that use pytorch with nvidia gpu support.
openproblems/base_tensorflow_nvidia Base image for scripts that use tensorflow with nvidia gpu support.
custom image
Update the setup definition in the platforms section of the config file. This section describes the packages that need to be installed in the Docker image and are required for your method to run.
If you’re using a custom image use the following minimum setup:
import anndata as ad## VIASH START# Note: this section is auto-generated by viash at runtime. To edit it, make changes# in config.vsh.yaml and then run `viash config inject config.vsh.yaml`.par = {'input_solution': 'resources_test/.../solution.h5ad','input_prediction': 'resources_test/.../prediction.h5ad','output': 'output.h5ad'}meta = {'name': 'my_python_metric'}## VIASH ENDprint('Reading input files', flush=True)input_solution = ad.read_h5ad(par['input_solution'])input_prediction = ad.read_h5ad(par['input_prediction'])print('Compute metrics', flush=True)# metric_ids and metric_values can have length > 1# but should be of equal lengthuns_metric_ids = [ 'my_python_metric' ]uns_metric_values = [ 0.5 ]print("Write output AnnData to file", flush=True)output = ad.AnnData()output.write_h5ad(par['output'], compression='gzip')
Contents of script.R
library(anndata)## VIASH STARTpar <-list(input_solution ="resources_test/.../solution.h5ad",input_prediction ="resources_test/.../prediction.h5ad",output ="output.h5ad")meta <-list(name ="my_r_metric")## VIASH ENDcat("Reading input files\n")input_solution <- anndata::read_h5ad(par[["input_solution"]])input_prediction <- anndata::read_h5ad(par[["input_prediction"]])cat("Compute metrics\n")# metric_ids and metric_values can have length > 1# but should be of equal lengthuns_metric_ids <-c("my_r_metric")uns_metric_values <-c(0.5)cat("Write output AnnData to file\n")output <- anndata::AnnData()output$write_h5ad(par[["output"]], compression ="gzip")
Required sections
Imports and libraries
In the top section of the script you can define which packages/libraries the metric needs. If you add a new or different package add the dependency to config.vsh.yaml in the setup field (see above).
Argument block
The Viash code block is designed to facilitate prototyping, by enabling you to execute directly by running python script.py (or Rscript script.R for R users). Note that anything between “VIASH START” and “VIASH END” will be removed and replaced with a CLI argument parser when the components are being built by Viash.
Here, the par dictionary contains all the arguments defined in the config.vsh.yaml file (including those from the defined __merge__ file). When adding a argument in the par dict also add it to the config.vsh.yaml in the arguments section.
Read input data
This section reads any input AnnData files passed to the component.
Generate results
This is the most important section of your script, as it defines the core functionality provided by the component. It processes the input data to create results for the particular task at hand.
Write output data to file
The output stored in a AnnData object and then written to an .h5ad file. The format is specified by the API file specified in the __merge__ field in the config file.
Step 5: Try component
Your component’s API file contains the necessary unit tests to check whether your component works and the output is in the correct format.
You can test your component by using the following command:
viash test src/metrics/my_python_metric/config.vsh.yaml
Output
Running tests in temporary directory: '/tmp/viash_test_accuracy_15099038344042335632'
====================================================================
+/tmp/viash_test_accuracy_15099038344042335632/build_engine_environment/accuracy ---verbosity 6 ---setup cachedbuild ---engine docker
[notice] Building container 'ghcr.io/openproblems-bio/task_template/metrics/accuracy:test' with Dockerfile
[info] docker build -t 'ghcr.io/openproblems-bio/task_template/metrics/accuracy:test' '/tmp/viash_test_accuracy_15099038344042335632/build_engine_environment' -f '/tmp/viash_test_accuracy_15099038344042335632/build_engine_environment/tmp/dockerbuild-accuracy-u4e3Mq/Dockerfile'
#0 building with "default" instance using docker driver
#1 [internal] load build definition from Dockerfile
#1 DONE 0.0s
#1 [internal] load build definition from Dockerfile
#1 transferring dockerfile: 565B done
#1 DONE 0.0s
#2 [internal] load metadata for docker.io/openproblems/base_python:1.0.0
#2 DONE 0.1s
#3 [internal] load .dockerignore
#3 transferring context: 2B done
#3 DONE 0.0s
#4 [1/2] FROM docker.io/openproblems/base_python:1.0.0@sha256:af6630b3aa321c4f5934012a65ab66a71bacba1b22d355d842c8c13b1c2592ac
#4 CACHED
#5 [2/2] RUN pip install --upgrade pip && pip install --upgrade --no-cache-dir "scikit-learn"
#5 0.478 Requirement already satisfied: pip in /usr/local/lib/python3.11/site-packages (24.3.1)
#5 0.567 Collecting pip
#5 0.662 Downloading pip-25.0.1-py3-none-any.whl.metadata (3.7 kB)
#5 0.685 Downloading pip-25.0.1-py3-none-any.whl (1.8 MB)
#5 0.789 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.8/1.8 MB 28.5 MB/s eta 0:00:00
#5 0.884 Installing collected packages: pip
#5 0.884 Attempting uninstall: pip
#5 0.887 Found existing installation: pip 24.3.1
#5 0.929 Uninstalling pip-24.3.1:
#5 0.941 Successfully uninstalled pip-24.3.1
#5 1.732 Successfully installed pip-25.0.1
#5 1.732 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.
#5 2.229 Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/site-packages (1.6.1)
#5 2.346 Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.11/site-packages (from scikit-learn) (2.1.3)
#5 2.347 Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.11/site-packages (from scikit-learn) (1.15.1)
#5 2.347 Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/site-packages (from scikit-learn) (1.4.2)
#5 2.347 Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/site-packages (from scikit-learn) (3.5.0)
#5 2.434 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.
#5 DONE 2.6s
#6 exporting to image
#6 exporting layers
#6 exporting layers 2.1s done
#6 writing image sha256:f3fb12cc18d8d8dcfe605ad21f765bbf5114de9b918c0093a7ca3fa3a9413358 done
#6 naming to ghcr.io/openproblems-bio/task_template/metrics/accuracy:test done
#6 DONE 2.1s
====================================================================
+/tmp/viash_test_accuracy_15099038344042335632/test_run_and_check_output/test_executable
>> Running test 'run'
>> Checking whether input files exist
>> Running script as test
Reading input files
Encode labels
Compute metrics
Write output AnnData to file
>> Checking whether output file exists
>> Reading h5ad files and checking formats
Reading and checking output
AnnData object with n_obs × n_vars = 0 × 0
uns: 'dataset_id', 'method_id', 'metric_ids', 'metric_values', 'normalization_id'
All checks succeeded!
====================================================================
+/tmp/viash_test_accuracy_15099038344042335632/test_check_config/test_executable
Load config data
Check .namespace
Check .info.type
Check component metadata
Check references fields
Check Nextflow runner
All checks succeeded!
====================================================================
SUCCESS! All 2 out of 2 test scripts succeeded!
Cleaning up temporary directory
Visit “Run tests” for more information on running unit tests and how to interpret common error messages.
You can also run your component on local files using the viash run command. For example:
viash run src/metrics/my_python_metric/config.vsh.yaml --\--input_prediction resources_test/task_template/cxg_mouse_pancreas_atlas/prediction.h5ad \--input_solution resources_test/task_template/cxg_mouse_pancreas_atlas/solution.h5ad \--output output.h5ad